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Abstract

This paper examines effects of the U.S. Immigration Act of 1990 on STEM (science,

technology, engineering, and mathematics) education and labor market outcomes for native-

born Americans. The Act increased the inflow and stock of foreign STEM workers in the

U.S., potentially altering the relative desirability of STEM fields for natives. The authors

examine effects of the policy on STEM degree completion, STEM occupational choice, and

employment rates separately for black and white men and women. The novel identification

strategy measures exposure to foreign STEM workers of age-18 native cohorts immediately

before and after the policy change via geographic dispersion of foreign-born STEM workers

in 1980, which predicts subsequent foreign STEM flows. The Act affected natives in three

ways: (1) black male students moved away from STEM majors; (2) white male STEM graduates

moved away from STEM occupations; and (3) white female STEM graduates moved out of

the workforce.
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Increasing the science, technology, engineering, and mathematics (STEM) workforce is

widely viewed in the United States as vital for innovation, economic growth, well-being, and

national security (National Academies (National Academy of Sciences, National Academy of

Engineering, and Institute of Medicine), 2010; President’s Council of Advisors on Science and

Technology (PCAST), 2012). One potential way to grow the STEM workforce is through increased

high-skilled immigration. However, an increased number of foreign-born STEM workers might

impact STEM education and employment of natives overall, and especially among groups historically

underrepresented in STEM. The extant literature is small, and much is still unknown.

In this paper, we use a novel identification strategy to examine effects on the education

and employment outcomes of native-born Americans of a U.S. policy that dramatically increased

the number of foreign-born skilled workers over a short period of time. Specifically, we examine

whether the U.S. Immigration Act of 1990 (IA90) altered STEM graduation rates and STEM

employment rates of native-born Americans. We also study whether the policy had different

effects on different demographic subgroups.

We estimate reduced-form effects of increased foreign-born STEM workers on U.S. native

STEM degree completion and employment by using policy changes from IA90 as a natural experiment.

We employ an identification strategy using variation in natives’ exposure to foreign STEM workers

in two dimensions: (1) those who turned 18 immediately before and after the policy; and (2)

cross-state foreign-born shares of STEM workers in 1980, which precedes IA90 and predicts

subsequent foreign STEM flows to state and local areas.

It is important to understand both the costs and benefits of increased high-skilled immigration

on the U.S. economy. While there are likely numerous benefits to the U.S. from admitting high-

skilled foreigners into the country, high-skilled immigration may also impose costs on some
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Americans. Knowing who bears the costsand what the size of the costs areis important for crafting

policies to maximize welfare. Our study sheds light on how high-skilled immigration affects the

human capital investment and utilization of native workers and has important implications for

both immigration and human capital policy.

1 Policy Background and Literature Review

The U.S. Immigration Act of 1990 was passed by Congress on October 27, 1990 and was signed

into law by President George H.W. Bush on November 29, 1990. The law became effective October

1, 1991the start of the U.S. government’s 1992 Fiscal Year. The Act constituted a comprehensive

immigration reform that both increased immigration overall and placed greater emphasis on

admitting skilled immigrants. President Bush (1990) called it “the most comprehensive reform

of our immigration laws in 66 years.”

The Act was designed to increase skilled immigration in two distinct and important ways.

First, occupation-based immigrant visas available per year increased from 54,000 to 140,000 and

placed increased emphasis on education and work skills (Greenwood and Ziel, 1997). Recipients

of these visas immediately obtained green cards and became permanent residents. Second, IA90

also substantially revised the temporary work visa program by creating the widely publicized

H-1B program for temporary work visas in specialty occupations, many of which were STEM-

related. The H-1B program also significantly reduced barriers for skilled workers on temporary

visas to pursue permanent residency (Lowell, 2001).1

1The H-1B program was initially capped at 65,000 visas per year. This cap was raised to 115,000 in 1998 and

then to 195,000 in 2000 before being reduced to 85,000 in 2004 (with exemptions for academic, non-profit, and

governmental research institutions). STEM occupations are heavily represented among H-1B visas and the program

has played a major role in growing the foreign STEM workforce in the U.S (Kerr and Lincoln, 2010).
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Over time, the various policy changes from IA90 significantly increased the foreign-born

STEM workforce in the U.S., and this has been found to have increased innovation and economic

growth (Hunt and Gauthier-Loiselle, 2010; Kerr and Lincoln, 2010; Winters, 2014; Peri, Shih,

and Sparber, 2015). The increase in the foreign STEM workforce was especially driven by China

and India, which had previously experienced considerable excess demand and long waiting lists

for green cards (see Kerr, 2008, , Figure 3). The large increase in Chinese STEM immigrants

was also connected to the Chinese Student Protection Act (CSPA) signed in 1992, which allowed

Chinese students in the U.S. since the Tiananmen Square incident in 1989 to transition to permanent

resident status during 1993–1994. Excess green cards under CSPA were deducted from Chinese

quotas in subsequent years, so IA90 is still the binding legislation.2

The post-IA90 foreign STEM inflow was not equal across the U.S. The foreign STEM

workforce increased the most in areas that previously had large numbers of foreign STEM workers

(Peri, Shih, and Sparber, 2015). Newly arriving foreigners tend to locate in areas where persons

from the same national origin reside to take advantage of social networks and cultural and linguistic

similarity (Card, 2001). This pattern continued after IA90. States with previously high levels of

foreign STEM workers, like California, New York, and Washington, received some of the largest

inflows of foreign STEM workers after 1990. However, such states also experienced growing

demand for STEM workers, especially related to the information and communication technology

(ICT) revolution. Thus, examining effects of increased foreign STEM workers on natives requires

careful consideration.

There is considerable debate and conflicting empirical evidence about whether increases

2The influx of foreign STEM workers also included immigrants from former Soviet republics after 1992,

especially among academic mathematicians, as noted by Borjas and Doran (2012).
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in foreign workers actually constitute adverse labor market shocks (Card, 1990, 2001; Borjas,

2003, 2017; Bound et al., 2015; Bound, Khanna, and Morales, 2017; Kerr, 2013; Peri, Shih, and

Sparber, 2015; Llull, 2017). Theory suggests that an increase in foreign-born skilled labor supply

will adversely affect labor outcomes for natives who are easily substitutable with the skilled

foreigners, consistent with a downward-sloping demand curve for a particular type of labor. However,

skilled foreigners may be complementary with other native workers and increase their productivity.

The net effect is thus theoretically ambiguous. Similarly, an increased supply of foreigners with

particular skills may encourage natives to alter their human capital investments toward skills that

are less substitutable and more complementary with foreigners (Peri and Sparber, 2009, 2011;

McHenry, 2015; Jackson, 2016; Hunt, 2017).

A large influx of foreign-born STEM workers has the potential to alter college major

decisions and post-graduation outcomes of natives. Minorities and women, who are already considerably

underrepresented in STEM fields (Weise and Guynn, 2014; Bidwell, 2015; Neate, 2015; Lowe,

2016; Vara, 2016), may be especially affected (Orrenius and Zavodny, 2015). A broad literature

finds that minorities tend to be the most severely harmed by adverse labor market shocks (Couch

and Fairlie, 2010; Hoynes, Miller, and Schaller, 2012; Hirsch and Winters, 2014). Borjas, Grogger,

and Hanson (2010) suggest that labor market outcomes of black men are especially harmed by

immigration. Similarly, women and minorities might be the most likely to shift away from STEM

degrees or STEM occupations by increases in foreign STEM workers.

The research literature on the effects of foreigners on native STEM education is thin,

comprising just two studies. Orrenius and Zavodny (2015) find that increases in same-age foreigners

during school ages reduce STEM education for native women but not men. Anelli, Shih, and

Williams (2017) examine administrative data for one large public university in California and find

5



that foreign student shares in undergraduate math classes crowd natives out of STEM and into

a similarly high-paying subset of social science majors. In contrast, our approach examines how

increases in foreign-born competition in the labor market affects STEM education and employment

among natives.

2 Empirical Framework

This section outlines our data, identifying assumptions and empirical strategy for estimating

the impact of IA90 on native skill investments and utilization. We use nationally representative

microdata with annual variation based on year age 18. Our approach allows for a distinct break

in the timing of the treatment. We also measure native foreign STEM exposure by state of birth

instead of current residence to account for possible out-migration in response to foreign inflows.

2.1 Data

Our primary data come from the 2009–2016 American Community Survey (ACS) microdata

extracted from IPUMS (Ruggles et al., 2017). The ACS annually surveys 1% of the U.S. population

and includes individual information on age, sex, race, ethnicity, state of birth, occupation, employment,

education level, and undergraduate field of study for those completing a bachelor’s degree or

higher. College major was first asked in the 2009 ACS, which limits the start period for our sample.

We define ACS college majors as STEM majors based primarily on definitions used by U.S. Immigration

and Customs Enforcement. The full list of ACS majors coded as STEM is in Appendix Table A1.

Some graduates report double majors. We classify them as STEM graduates if either their first or

second major is a STEM field.
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Along with college major, we are interested in whether STEM graduates work in STEM

occupations and in measuring the extent of foreign presence in STEM occupations. Our main

definition for STEM occupations includes persons working as engineers, mathematicians, natural

scientists, computer scientists, and computer software developers, but we also examine robustness

to considering a broader definition with health-diagnosing occupations (and STEM college instructors

in 1980). The list of STEM occupations is in Appendix Table A2.

2.2 Identifying Assumptions

An important issue for our analysis is deciding which individuals were most exposed to the increased

inflow of skilled foreign-born workers. Following existing literature, we measure the timing of

increased foreign STEM shocks from IA90 for natives based on the year they were 18 years of

age. We compute the year age 18 as the ACS calendar year minus age at the time of the survey

plus 18.3 We do not observe in the data when someone graduated high school, attended college,

or chose their college major, but we follow previous literature and assume that individuals graduate

high school, begin college, and choose their major at age 18 (Dynarski, 2008; Malamud and

Wozniak, 2012; Orrenius and Zavodny, 2015; Sjoquist and Winters, 2014, 2015). To isolate the

effects of IA90, we restrict our main analysis to persons who were age 18 in the four years prior

to and following 1990 (i.e. 1986–1994); these persons were ages 33–48 in 2009–2016. We assume

that persons age 18 in 1986–1989 made their educational decisions independent of IA90, while

persons age 18 in 1991–1994 were potentially affected by IA90. We exclude persons age 18 in

1990 because they may be partially affected, but likely not as strongly as later cohorts. Their

3For example, someone surveyed in 2010 at age 36 would have been 18 in year 1992.

7



inclusion would likely increase measurement error in the treatment from IA90.4 By including

year 1991 in the treatment, we allow for both the announcement and implementation of IA90

to affect the outcomes we analyze. Examining a longer time period might cause other policy

changes and economic shocks to confound the analysis. However, we also present results with

moderate expansions in the time period examined.

One might wish to measure the actual presence of foreign STEM workers by year across

geographic areas, but we do not take this approach for two main reasons. First, using contemporaneous

measures for foreign STEM presence and native STEM education would likely cause the relationship

to be confounded by unobserved demand shocks for STEM workers that ceteris paribus increase

both native STEM education and foreign STEM inflows. Second, there is no annual data on foreign

STEM workers during this time period. Decennial census data are available for 1980, 1990, and

2000, but intercensal population estimates do not include occupation. Another potential data

source, the Current Population Survey (CPS), is conducted annually and includes occupation

information but not citizenship or foreign birth status prior to 1994 and cannot be used to confidently

construct measures of foreign STEM workers for our study. CPS sample sizes for individual

states are also relatively small and would produce noisy estimates even if foreign-born persons

were identifiable.

We measure a state’s foreign STEM exposure as the share of college-educated STEM

workers ages 25–59 who are foreign born in that state using the 1980 census 5% microdata file

from IPUMS (Ruggles et al., 2017).5 The foreign STEM share is measured for 1980 instead of

1990 so that it is determined before our 1986–1989 control group cohorts make initial higher

4The 1986–1989 cohorts could have been partially affected also. If so, assuming that they are unaffected would

induce measurement error in the treatment from IA90 and attenuate pre- and post-IA90 differences toward zero.
5In the 1980 Census, we define college education as completing four years of college or more. In the 1990 and

2000 Censuses and the ACS, we define college education as holding a bachelors degree or advanced degree.
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education decisions at age 18, and so that it precedes the ICT revolution that increased demand

for STEM skills.

The motivation for using the 1980 foreign STEM share is that previous research inclines

us to expect IA90 to increase the foreign STEM workforce the most in areas that already had

large numbers of foreign STEM workers (Kerr and Lincoln, 2010; Peri, Shih, and Sparber, 2015).

This relationship is illustrated in Figure 1. We compute the foreign STEM share by state in 1990

and 2000 using the decennial census 5% files and then compute 1990–2000 changes. Regressing

the 1990–2000 change in the foreign STEM share on the 1980 foreign STEM share yields a

positive coefficient of 0.467 that is statistically significant at the 1% level with an R2 of 0.338.

Areas with already high foreign STEM shares in 1980 saw especially large increases in foreign

STEM shares during the 1990s following IA90. As noted above, data limitations prevent us from

constructing measures of annual growth in the foreign STEM share. However, we expect that the

college major decisions of native-born Americans would be affected both by the actual increase

in the foreign STEM workforce during their college years as well as their expectations about

future increases.

We use state of birth to measure differential exposure to increased levels of foreign STEM

workers across states. The ACS does not report the location where someone attended high school

or college, but state of birth has been used as a proxy for these by previous researchers (Dynarski,

2008; Malamud and Wozniak, 2012; Orrenius and Zavodny, 2015; Sjoquist and Winters, 2014,

2015). Sjoquist and Winters (2014) report that in 1990, roughly three-fourths of persons ages 15–

17 resided in their state of birth. Since some young people do move out of their birth state before

finishing high school and starting college, the birth-state exposure assumption will induce some

degree of measurement error, which is likely to attenuate coefficient estimates toward zero.
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One threat to our identification strategy is the adoption of merit-based scholarship programs.

Sjoquist and Winters (2015) find that state adoption of “strong” merit-based scholarship programs

causes students to shift away from STEM majors. Georgia is the only state to adopt a strong

merit aid program during the 1986–1994 period, but Arkansas, Missouri and North Dakota also

adopted weaker programs during this period. To avoid potential confounding effects, our primary

analysis excludes these four merit states, but results are robust to including them.

2.3 Empirical Strategy

We now detail our empirical strategy for examining effects of increased foreign STEM inflows.

One approach for estimating effects of foreign STEM exposure on native STEM outcomes would

be to compare natives born in states that were differentially exposed to foreign STEM workers,

before and after the policy, with a binary treatment dummy. Assuming a linear probability model

(LPM) gives a classic difference-in-differences regression equation:6

P(Yisc = 1) = α0 +α1 postc +α2exposeds +θ postc × exposeds (1)

where postc indicates year-age-18 cohorts c that began college after 1990, and exposeds indicates

individuals born in states s where foreign STEM exposure was high. θ is the difference-in-differences

estimate, which gives the effect of the policy.

In our setting, however, treatment is continuous rather than binary, so we modify the basic

model to allow for dosage effects:

6We estimate linear probability models instead of probit or logit models for simplicity and ease of interpretation.

LPM is very common in the policy evaluation literature when models include high dimensional fixed effects and

facilitates easier interpretation of marginal effects.
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P(Yisc = 1) = α0 +α1 postc +α2exposures +θ postc × exposures (2)

where exposures =
N1980,ST EM,s, f oreign

N1980,ST EM,s
measures foreign STEM exposure in the individual’s state

of birth on a scale of zero to one. N1980,ST EM,s refers to the total number of college-educated

workers (age 25-59) in state s in 1980 working in STEM occupations, while N1980,ST EM,s, f oreign is

the number of college-educated workers (age 25-59) in state s in 1980 working in STEM occupations

and who were not born in the United States.

We are also interested in controlling for additional sources of heterogeneity, such as birth

cohort, birth state, year of survey, age at survey, and time-varying birth-state characteristics. Our

preferred specification is thus:

Pr(Yiscta = 1) = θForeignSTEMexposuresc +Γs +Πc +Ψt +Ωa +βZsc +δsTsc, (3)

where ForeignST EMexposuresc is our measure of foreign STEM exposure, equal to postc ×

exposures in (2), and t indexes ACS survey year while a indexes age at which the ACS survey

was taken. Birth state fixed effects, Γs in (3), replace the exposures variable from (2), while year-

age-18 cohort fixed effects, Πc, replace the postc dummy. Other studies with dosage effects in a

difference-in-differences framework include Acemoglu, Autor, and Lyle (2004) and Stevenson

(2010), among others.

The model also includes survey year effects (Ψt) and age effects (Ωa). Because we observe

cohorts at ages 33–48 and include year-age-18 cohort dummies, these effects control for aggregate

business cycle variation during the ACS survey years and variation in the time duration between
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age 18 and the time of the survey.

Additionally, our models include time-varying state-level control variables (Zsc) measured

at year age 18 in one’s birth state and birth-state by year-age-18 linear time trends (Tsc). The

Zsc variables include log cohort size at age 18 from U.S. Census Bureau intercensal population

estimates, the state unemployment rate from the U.S. Bureau of Labor Statistics, and the log of

median household income computed from the Current Population Survey. State-specific time

trends account for other unobservable factors, e.g., increased relative demand for STEM skills.

We primarily examine three separate outcomes in which Yiscta equals one for persons

meeting the following conditions: (1) graduating with a bachelor’s degree in a STEM field; (2)

working in a STEM occupation during the 2009–2016 ACS reference period; and (3) working

in any occupation during the 12 months prior to their 2009–2016 ACS survey. We also discuss

results for additional related outcomes. We estimate the models separately for native-born black

and white men and women.7 All estimates use sample weights. Standard errors are clustered by

birth state.

Birth-state fixed effects and cohort effects control for time-invariant differences across

birth states and aggregate time differences across cohorts, respectively. Thus, identifying variation

comes from differences across cohorts within states, while subtracting out aggregate time effects.

More specifically, our analysis compares the pre- and post-IA90 within-state changes in native

STEM outcomes across states with differing treatment intensities. If IA90 caused foreign STEM

workers to crowd natives out of STEM fields, we would expect this to be most pronounced in

7Throughout this study, we refer to white and black individuals as those who are not Hispanic. We do not

examine Hispanics or Asians because native Hispanics and Asians are often the children or grandchildren of

immigrants and parental birthplace is unobserved in our data; assimilation differences across cohorts and states

are unobserved and likely affect our outcomes. Other racial groups are also not examined because they yield small

ACS samples that prevent precise inferences.
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states receiving the largest dose of treatment. This would induce a negative coefficient for θ .

Our identification strategy assumes that the within-state variation across cohorts in the

foreign STEM exposure variable is conditionally correlated with the outcomes we consider only

through the effects of IA90. For college major decisions, this assumes that there were no other

major changes in policy or economic conditions systematically related to the 1980 foreign STEM

share at the same time as young people were making college major decisions. We have extensively

searched the literature and found no such policy changes that could significantly affect the results.

However, we do have some concern that the ICT revolution could have increased demand for

STEM skills the most in states with previously high shares of foreign STEM graduates, which

could bias results toward zero. We discuss in a later section sensitivity analyses that attempt to

address this concern.

For the ACS employment outcomes, we hypothesize at least two factors that could affect

our estimates. First, the post-IA90 inflow of foreign-born STEM workers could affect the ACS

employment outcomes of pre-IA90 cohorts, meaning that the control group receives treatment

also. Second, the post-IA90 inflow of foreign-born STEM workers could cause native workers

interested in STEM employment to move away from high ForeignST EMExposuresc states and

into low-exposure ones, which would effectively increase exposure in low-exposure states. In

general, both concerns would likely attenuate estimates toward zero relative to the true effects.

However, we do expect our estimation strategy to detect at least some differences in recent employment

outcomes.
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3 Empirical Results

In this section, we present summary statistics of our data and discuss the empirical estimates of

equation (3). We focus on three separate outcomes: (1) STEM bachelor’s degree completion of

natives; (2) native employment in STEM occupations; and (3) native employment in any occupation.

3.1 Summary Statistics

Before discussing estimates of our empirical strategy, we present summary statistics on exposure

and outcomes for the groups in our data. Table 1 panel A reports weighted summary statistics for

the 1991–1994 cohorts for the foreign STEM exposure measure, separately by race-sex combination.

By construction, the measure equals zero for the 1986–1989 cohorts. The 1980 foreign STEM

share has weighted mean of 0.121 and 0.118 for blacks and whites respectively, with no observable

difference by sex.8 For all groups, the standard deviation is 0.057, the min is 0.018, and the max

is 0.216. For ease of interpretation, all regression results in this section scale up the foreign STEM

share explanatory variable by a factor of 10, so that the variable ranges from 0 to 10 and a one-

unit increase corresponds to a 10-percentage-point increase in the foreign STEM share, or about

1.75 standard deviations of the unscaled variable. Table 1 panel B reports race-sex means for

the 1986–1989 cohorts for the main outcome variables we consider. Finally, Table 1 panel C

reports race-sex means for the 1991–1994 cohorts. The outcome means across the two groups

are similar.

8If we look at the foreign STEM share for the 1986–1989 cohorts (not interacted with the post-1990 dummy), we

get a weighted mean of 0.122 for blacks and 0.121 for whites, indicating that the place-of-birth distribution over this

time period was stable with respect to foreign STEM exposure.
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3.2 College Major Choice

We first examine whether the Immigration Act of 1990 influenced college major decisions for

natives. We estimate equation (3) where the dependent variable is an indicator for if the individual

graduated college with a major in a STEM field. Panel A of Table 2 shows the effect of birth-state

foreign STEM exposure on native STEM degree attainment, unconditional on education level;

i.e., the sample includes all education levels and is not restricted to those completing a bachelor’s

degree. Our most notable finding is that black men are much less likely to major in a STEM field

as a result of the policy.9 The coefficient of -0.017 is statistically significant at the 5% level and

large in magnitude. It indicates that a 10-percentage-point (1.75-standard-deviation) increase

in foreign STEM exposure reduces STEM degree completion for black men by 1.7 percentage

points. This is roughly 40% of the pre-IA90 mean STEM degree rate for black men of 0.041

reported in Table 1 Panel B. In contrast, black women and white men appear unaffected by the

policy change. White women have a small positive coefficient of 0.004 that is marginally significant

at the 10% level (p-value = 0.099).

Panels B and C of Table 2 help assess whether the negative effect for black men in Panel

A is driven by decreased bachelor’s degree attainment or decreased STEM attainment conditional

on bachelor’s attainment. Panel B shows that bachelor’s degree attainment was unaffected, while

Panel C reports that IA90 caused black male college graduates to be much less likely to major

in a STEM field, with a coefficient of -0.085 that is statistically significant at the 5% level. This

9While not our focus, the much smaller sample size for black men than black women is consistent with census

population estimates and vital statistics showing disturbingly high mortality rates for black men. The ACS includes

samples of the institutionalized population and they are included in our analysis. However, our results are not

affected by controlling for the size of black male cohorts or non-institutionalized cohorts. Higher mortality and

institutionalization are unlikely to affect marginal STEM graduates in ways correlated with our foreign STEM

exposure measure.

15



indicates that a 10-percentage-point increase in foreign STEM exposure reduced STEM major

rates by 8.5 percentage points for black male college graduates, or 34% of the pre-IA90 mean of

0.249 in Table 1.

The other demographic groups examined are not significantly affected in either of the

separate dimensions in Panels B and C of Table 2. This includes white women, which had a small

coefficient in Panel A significant at the 10% level. The implied relative magnitude for the white

female Panel A coefficient corresponds to less than 10% of the pre-IA90 mean, which is relatively

modest. Given the modest magnitude, marginal significance in Panel A, and lack of significance

in Panel C, we do not interpret the results to indicate a meaningful effect of IA90 on white female

STEM education.

To further illustrate the effects of IA90 on STEM education, Figure 2 presents cohort

trends in STEM major rates for college graduates, separately for our four race-sex groups. We

split states into two groupshigh-exposure and low-exposurebased on whether their 1980 foreign

STEM share exceeds 0.120, which marks the top tercile of the exposure distribution.10 Figure 2

is consistent with the results in Panel C of Table 2 despite lacking regression controls. Specifically,

we see a large drop in black male STEM major rates in high-exposure areas, starting around 1990.

In contrast, STEM major rates for black men in low-exposure states appear to have increased

slightly after 1990. The large differences as early as 1990 suggest that the policy had strong announcement

effects as well as implementation effects on STEM degree completion of black men. Furthermore,

we observe apparent pre-1990 upward trends in both low- and high-exposure states, possibly

because of the growing demand for STEM skills related to the ICT revolution. This reinforces

10We focus on the top tercile of the distribution because our results indicate that the response to IA90 was

concentrated among the states that were most exposed (see Table B7). The graph looks similar if we use the mean

or median as the cut point defining high exposure. Ambiguity about how best to define “high” motivates our use of a

continuous treatment in our model.
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the importance of controlling for state-specific time trends in our main analysis.

For other demographic groups, we see similar increases in STEM education rates post-

1990 for both high-exposure and low-exposure states, possibly due to expectations of increased

employer demand for technical skills more broadly. Thus, Figure 2 indicates no meaningful difference

in STEM education trends between high and low foreign STEM exposure states for white men,

white women, and black women. Black men are clearly unique in this regard, consistent with the

results in Table 2.

The results lead one to wonder if black men disproportionately switched into certain non-

STEM majors, or if they disproportionately switched out of certain STEM majors. Tables 3 and 4

report estimates similar to Panel C of Table 2, but where instead the dependent variable is graduation

in a specific non-STEM major in Table 3 or a specific STEM major in Table 4.

Table 3 suggests that popular destination majors for black men included business, liberal

arts, and social sciences, but specific effects are imprecisely estimated, and we cannot reject

uniformity in the distribution of destination field switches. The spread across non-STEM fields

suggests that black men moved out of STEM fields much more than they moved into any particular

non-STEM field. This supports our contention that IA90 was primarily a shock to STEM fields

and that the effects we estimate are due to this IA90 shock to STEM. That is, we are not simply

capturing some unobserved change that directly altered preferences for other majors and affected

STEM education indirectly.

Table 4 shows consistently negative coefficients for STEM major sub-fields for black

men. Computer science, biological sciences, physical sciences, and math were the majors that

black men switched away from at the highest rates, but only the math coefficient is statistically

significant at conventional levels. These results suggest that the shock to black male STEM majors
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was spread across several sub-fields and not driven by any single one.

3.3 STEM Occupation Employment

We now examine the effect of IA90 on the probability of being employed in a STEM occupation

during the reference week of the 2009–2016 ACS. We report in Figure 3 the raw differences

in STEM occupation employment among STEM BA degree holders between high- and low-

exposure states, by cohort. For most demographic groups, there is a sharp decline in high-exposure

states in 1990 or 1991. While informative of broad trends, our regression estimates are more

informative of IA90’s effects because the estimates correct for persistent state-specific differences

and state-specific trends and allow for treatment to be continuous rather than discrete.

Regression results are reported in Table 5 for three education samples. Panel A includes

all college graduates, while Panels B and C include STEM graduates and non-STEM graduates,

respectively. In both Panels A and B, white men move out of STEM occupations in response to

higher foreign STEM exposure, with coefficients significant at the 1% level. The effect magnitudes

are also sizable. A 10-percentage-point increase in foreign STEM exposure reduces white male

STEM employment by 2.0 percentage points across all college graduates and by 5.8 percentage

points among STEM graduates. These effect magnitudes correspond to roughly 17% and 20% of

the respective pre-IA90 means for white male graduates and STEM graduates.

For the other demographic groups, there are no significant effects in Table 5 Panel A

for the samples of all college graduates. However, conditioning on STEM degree completion

in Panel B yields a negative coefficient of -0.036 for white women that is significant at the 5%

level; this effect corresponds to 27% of the pre-IA90 mean.11 Black men and women both have

11In Table B8, we also separated STEM occupations into 1) engineers, 2) computer scientists and software
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relatively large but noisily estimated coefficients in Panel B, with the black male coefficient having

a positive sign. While this may seem counter-intuitive to the results in Table 2 documenting reduced

STEM graduation for black men, we emphasize that IA90 potentially altered the composition of

black male STEM majors in high-exposure areas in terms of ability and STEM attachment. Thus,

results that condition on STEM or non-STEM major for black men should be interpreted with

caution. Panel C reports no significant effect of IA90 on STEM employment for graduates in non-

STEM fields.

3.4 Any Employment

We also examine previous year employment as an outcome. Figure 4 displays the raw differences

in employment for STEM BA degree holders by demographic group, state exposure, and cohort.

The results in Figure 4 are much noisier than their counterparts in Figures 2 and 3. Most striking

is the drop in white female employment in 1991 in high-exposure states relative to low-exposure

states, as well as a drop in black male employment in 1991–1992 in low-exposure states compared

to high-exposure states. While noisy, the results are in line with our regression results, which we

discuss below.

Table 6 reports effects of IA90 on employment in any occupation during the 12 months

prior to the 2009–2016 ACS survey. We examine the same three education samples as Table 5

and include all graduates regardless of stated labor force participation, so the results are akin to

employment-population ratios. Across all three panels, the estimates for black men and black

developers, and 3) mathematicians and natural scientists. The first two groups combine to account for more than

80% of STEM graduates in STEM occupations in our sample and account for a great majority of the negative effect

of IA90 on STEM occupations of white STEM graduates reported in Table 5. Additionally, results in Table B12

examine recent (rather than current) employment in a STEM occupation and mirror the results of Table 5.
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women are relatively noisy and prevent strong inferences.

For white men, the coefficient is positive and significant in Panels A and C but virtually

zero in Panel B. Thus, it appears that foreign STEM exposure increases the work probability of

white male non-STEM graduates but has no effect on the work probability of white male STEM

graduates. Combined with Table 5, this suggests that the white male STEM graduates who moved

out of STEM occupations shift toward work in non-STEM occupations and not out of the workforce.

The positive employment effect of white male non-STEM graduates is consistent with complementarities

between foreign STEM graduates and native non-STEM graduates (Llull, 2017).

For white women, foreign STEM exposure has a negative coefficient in all three panels

of Table 6, but the effect is only significant for STEM graduates in Panel B. The coefficient of

-0.037 for white female STEM graduates is very similar to the corresponding effect on current

STEM employment in Table 5, suggesting that white female STEM graduates who move out of

STEM occupations appear to exit the workforce altogether.

We also examine several other related outcomes, with results in the online appendix. We

look at whether STEM graduates worked at all in any occupation in the past five years and find

similar results as Table 6 (see Panel C of Table B9). We also investigate employment during the

ACS reference week (Table B13), unemployment, and labor force non-participation (Table B9).

We examine log annual earnings in the ACS and find noisily estimated negative coefficients for

native STEM graduates and for black male college graduates (Table B14).

In summary, we find that IA90 had three main effects that differ by race-sex group: (1)

it caused black male college graduates to move out of STEM majors; (2) it caused white male

STEM graduates to move out of STEM occupations; and (3) it caused white female STEM graduates

to move out of the workforce.
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3.5 Treatment of pre-1990 Cohorts

Due to the nature of the policy and the outcomes we measure, it is possible that the pre-1990

cohorts (our control group) were treated. For example, older students might have delayed graduation

because of the policy, so they could switch majors, or those who were in the workforce after

college may have had to compete with skilled foreigners later in their careers, even if treatment

happened after their initial labor market entry.

We assess the degree to which our control groups were treated in two ways. First, we

estimate cross-sectional regressions similar to equation (3) separately for pre- and post-1990

cohorts. To identify the coefficient on Foreign STEM Exposure, we exclude the birth state fixed

effects and birth state cohort trends from the model. Second, we expand the window of our analysis

to include the 1982–1985 year-age-18 cohorts. We treat these oldest cohorts as the new control

group and estimate separate treatment effects for the 1986-1989 and 1991-1994 cohorts.

The cross-sectional analyses corresponding to our main findings are included in Table

7 (abbreviated results) and Table B15 (complete results). There appears to be relatively little

treatment of the pre-1990 cohorts. For post-1990 cohorts, negative effects on STEM graduation

for black men and STEM employment for white men continue to hold, albeit in smaller magnitudes.

The employment effect for white women disappears. While these results are somewhat informative

about whether pre-1990 cohorts received treatment, we emphasize that they exclude state fixed

effects and state cohort trends which are essential to properly capture unobservable state characteristics

that are correlated with immigration.

The results of our second approach are included in Online Appendix Table B11. We find

that employment outcomes for white women in the 1986-1989 cohorts appear to have been treated,
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but there is no significant effect on STEM employment for white men in the 1986–1989 cohorts.

Results for black male STEM degree completion are noisily estimated by this approach, but the

1986–1989 cohorts have an insignificant positive coefficient, which makes negative effects among

black men in the 1991–1994 cohorts starker.

3.6 Instrumental Variables

To help further illustrate effect magnitudes, we estimate two-stage least squares (2SLS) regressions,

with estimates for the primary findings in Table 8; additional results are in the online appendix

(see Tables B16-B18). The second-stage explanatory variable of interest is the 1990–2000 change

in the foreign STEM share, and the instrument is the 1980 foreign STEM share; both are interacted

with the post-1990 dummy and scaled upwards by a factor of 10 to facilitate comparison with

earlier results. Figure 1 illustrates the unconditional relationship for the first stage. However, the

first stage for Table 8 includes the control variables and is estimated separately for each sample.

The second-stage dependent variables and control variables are the same as in Table 2 Panel C for

black male college graduates, Table 5 Panel B for white male STEM graduates, and Table 6 Panel

B for white female STEM graduates.

This 2SLS approach makes strong assumptions, so results should be interpreted with

caution. For example, it assumes that the actual treatment was the 1990–2000 increase in the

foreign STEM share and assumes no treatment from post-2000 high-skilled immigration expansion.

It also assumes that college major and employment decisions made before year 2000 were made

in anticipation of the growth in the foreign STEM share to year 2000. If these assumptions fail,

this 2SLS procedure does not provide causal estimates. Still, it is a useful exercise for illustrating
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magnitudes under stronger assumptions.

As expected, first-stage results strongly indicate that 1990–2000 foreign STEM share

growth was larger in states with high foreign STEM shares in 1980. The first-stage F statistics

are well above the Stock and Yogo (2005) critical value for 10% maximal IV size, indicating that

weak instrument issues are not a concern. The first-stage coefficient on the instrument is 0.49

for black men, 0.50 for white men, and 0.49 for white women. Because the excluded instrument

here is the same as the reduced form explanatory variable in prior tables, a first-stage coefficient

of about one-half means that we should expect the second-stage coefficient to be about twice as

large as the corresponding reduced form coefficient. This is indeed what we find, suggesting that

effect magnitudes are quite largepotentially even larger than suggested by the reduced form.

3.7 Sensitivity Analysis

In results in the online appendix, we estimate effects of IA90-induced foreign STEM exposure on

our main outcomes using several alternative specifications. These include:

• Excluding state-specific time trends, or using the model selection techniques of Belloni,

Chernozhukov, and Hansen (2014) (see Table B1)

• Expanding the pre- and post-IA90 year-age-18 sample window to five or six years on either

side of the policy change (see Table B2)

• Including cohorts age 18 in 1990 in the control group (see Table B2)

• Separately excluding California, Florida, Illinois, New York, Texas, and Washington, which

have very high immigration levels and may be potential outliers (see Table B3, panels A-F)
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• Including the four excluded merit states in the analysis (see Table B3, panel G)

• Excluding states with population of less than 1 million in 1980, which may be more prone

to measurement error in the exposure variable (see Table B3, panel H)

• Adding a time-varying state control for the 1980 (or 1990) share of native college graduates

in the state employed in STEM occupations interacted with the post-IA90 dummy to account

for possible ICT effects related to past STEM employment (see Table B4, panels A and B)

• Excluding state control variables (see Table B4, panel C)

• Using the expanded definition of STEM occupations in Table A2 to measure foreign STEM

exposure (see Table B5, panel A)

• Measuring exposure to skilled foreign-born workers as the share of college educated workers

who are foreign-born (regardless of occupation), rather than the share of college educated

STEM workers who are foreign-born; or as the share of college educated non-STEM workers

who are foreign-born (see Table B5, panels B and C, respectively)12

• Using the expanded definition of STEM occupations in Table A2 for the native STEM

occupation outcome (see Table B6)

• Discretizing our continuous measure of exposure into terciles and estimating a classic

difference-in-differences model (see Table B7)

12The foreign STEM and non-STEM shares are very highly correlated, so that the non-STEM foreign-born

share variable in Table B5 picks up a significant effect. We appeal to economic theory to infer that foreign STEM

graduates are the primary treatment adversely affecting native STEM graduates because they are the ones with the

most substitutable skills.
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• Estimating a placebo in which we set 1985 (instead of 1990) as the year of the policy and

examining year age 18 cohorts 1981–1989 (instead of 1986–1994) (see Table B10)

The employment results for white female STEM graduates are not significant for alternative

specifications in the first two bullet points. We prefer the baseline specification, a priori, so our

best guess is that there is a negative effect of foreign STEM exposure on employment of female

STEM graduates. However, the sensitivity to specification choices moderates our confidence in

this effect.

The black male STEM major result is significantly negative except for when we exclude

New York from the sample, in which the coefficient is still large and negative but the p-value is

only 0.13 and thus not significant at the 10% level. However, we interpret this as a weak test

and are not surprised that the significance is moderately sensitive to one large state. Combining

either of the first two bullet point alternatives (dropping state trends or expanding the length of

the policy window) with excluding New York returns the black male STEM effect to significance

at the 5% level (see Panels I and J of Table B3).

We consistently find significant negative effects on STEM occupation employment for

white male STEM graduates. The greatest sensitivity occurs from excluding state trends; the p-

value is 0.104 and thus not significant at the 10% level, but the coefficient estimate is negative

and of non-trivial magnitude. Furthermore, we believe that the trend variables are warranted, so

our preferred specification includes them. As further evidence that trends should be included, our

use of Belloni, Chernozhukov, and Hansen’s (2014) model selection approach ends up selecting

many trend variables and yields large and significantly negative effects.
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4 Discussion

We next discuss potential pathways through which our main findings may operate and then place

our findings in the context of the broader literature on impacts of skilled immigration.

4.1 Black Men Switching out of STEM Majors

Our most surprising result is the unique shift of black men out of STEM degrees. In considering

potential reasons for this, we think it useful to consider prominent explanations in prior literature

for why STEM degree rates are so low among black men to begin with (Austen-Smith and Fryer,

2005; Griffith, 2010; Price, 2010; Arcidiacono, Aucejo, and Spenner, 2012; Card and Giuliano,

2015; Arcidiacono, Aucejo, and Hotz, 2016). We find five common explanations: (1) worse pre-

college academic resources and preparation that result in poor student-campus matches for STEM

persistence; (2) lack of similar role models in STEM; (3) cultural norms that deride academic

effort and achievement as “acting white”; (4) negative perceptions and low expectations for them

by others (teachers, family, community members, etc.); and (5) low self-confidence in their own

STEM abilities and chances for future STEM success. We also reviewed a separate literature

suggesting that black men may be especially sensitive to immigrant presence in the labor market,

perhaps due to cultural conflict, network effects, or employer discrimination (Chang, 1993; Kaufman,

1995; Waldinger, 1997; Borjas, Grogger, and Hanson, 2010).

After reviewing these literatures, we suggest that the most likely channel through which

IA90 lowers black STEM degree completion is via negative student expectations about future

success in STEM fields resulting from increased inflows of skilled foreign-born workers. The

descriptive data in Figure 2 suggest large announcement effects for the earliest treated cohorts,
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even before foreign inflows were likely to have large impacts on STEM labor markets. This result

is consistent with research studying how students form expectations about their majors (Zafar,

2011; Long, Goldhaber, and Huntington-Klein, 2015; Wiswall and Zafar, 2015; Weinstein, 2017).

What is unclear, however, is which information students would have used to modify their beliefs

about future success. The information may have originated from family members, students’ own

media consumption, or high school and university guidance counselors, creating important links

between the mechanisms noted above. Similarly, black men may have been especially pessimistic

about their post-IA90 STEM prospects because of past cultural and labor market conflicts between

blacks and immigrants. Furthermore, limited resources, preparation, role models, and peer discouragement

could have made some black men especially sensitive to STEM labor market shocks on their

choice of college major.

4.2 White Men Less Likely to Work in STEM Occupations

Second, we find that white male STEM graduates were less likely to be employed in STEM occupations

during the ACS period. This falls in line with related research showing that immigration shifts

natives to fields in which they have a comparative advantage (Peri and Sparber, 2009, 2011; Llull,

2017). Our finding is consistent with this literature if white STEM graduates are less prepared

to work in STEM jobs or more prepared to work in complementary fields (e.g. management and

marketing) than their foreign-born counterparts. Furthermore, the timing of foreign inflows likely

influences which natives are most affected. STEM graduates age 18 in the early 1990s faced

much greater labor market exposure to foreign STEM workers than those age 18 in the late 1980s.

We suggest that IA90 likely reduced initial STEM employment for highly exposed natives and
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that this had lasting effects observable roughly 20 years later, consistent with persistent effects of

entry labor market conditions found in Oreopoulos, von Wachter, and Heisz (2012) and Altonji,

Kahn, and Speer (2016).

Unfortunately, the ACS does not facilitate precise estimates of earnings effects for our

setting. However, we address this indirectly. Kinsler and Pavan (2015) examine the wage returns

to working in a related occupation for STEM majors. They find that working in a related occupation

causes STEM graduates to have 30% higher earnings than STEM graduates who are working in

unrelated occupations. This is in addition to the sizable wage returns to majoring in STEM that

are well documented in the literature.

Interestingly, while black men are less likely to major in STEM as a result of the policy,

black men are no less likely to find STEM jobs in the ACS. This may indicate that avoiding STEM

majors helped black men avoid occupational mismatch. However, there are likely adverse welfare

effects because of the substantial earnings differentials between STEM and non-STEM majors,

regardless of occupation relatedness.

4.3 White Female STEM Graduates Less Likely to Work

Third, our results suggest that IA90 made white female STEM graduates less likely to work in a

STEM occupation and less likely to work at all, with roughly equal magnitudes. These outcomes

appear jointly influenced by increased competition for STEM jobs from foreign-born STEM

workers. Entry labor market conditions at graduation can have lasting effects on employment

and occupational attachment Kahn (2010); Oreopoulos, von Wachter, and Heisz (2012); Altonji,

Kahn, and Speer (2016). Post-IA90 STEM graduates in high foreign STEM exposure states likely
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experienced especially difficult early labor market outcomes that result in some white female

STEM graduates leaving the workforce in the long run. Hunt (2016) suggests that female engineers

are more responsive than men to dissatisfaction with pay and promotion opportunities, causing

them to exit the profession at higher rates. Similarly, our results suggest that women respond to

adverse STEM labor market shocks from foreign inflows in unique ways compared to men.

4.4 Placing Our Findings in the Broader Skilled Immigration Debate

We now place our findings in the broader discussion of skilled immigrant impacts. As is well

noted in the literature, skilled immigration generates both costs and benefits for receiving countries.

The primary benefits include increased innovation, increased productivity and wages of workers

complementary to the immigrants, increased diversity in both culture and product markets, and

increased demand for housing. On the other hand, immigration diminishes the wage and employment

prospects of substitutable workers, potentially increases cultural conflict, increases housing prices,

and, as shown in the present study, reduces the frequency of underrepresented minorities in STEM

majors and of STEM-educated white men and women in STEM occupations.

In response to our findings, one might ask whether the adverse effects of high-skilled

immigration are large enough to offset a meaningful portion of the benefits. Peri, Shih, and Sparber

(2015) document positive wage effects of foreign STEM workers on both native college graduates

and non-college graduates. Their estimates imply that a 1-percentage-point increase in foreign

STEM growth results in a 7–8 percentage-point increase in the wage growth of native college

graduates. For native non-college graduates, the benefits are smaller but still large at 3–4 percentage

points. Aside from Peri, Shih, and Sparber (2015), Hunt and Gauthier-Loiselle (2010), Kerr and
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Lincoln (2010), Winters (2014), and others have shown that, on aggregate, immigration has improved

the U.S. economy through the pathways discussed in the previous paragraph.13

While growth in the STEM workforce has been shown to result in higher wages overall,

our findings suggest that STEM growth reduced the number of black men graduating in STEM

majors and the number of white male and female STEM graduates working in STEM occupations.

We also document in Table B14 earnings losses of about 3%–6% among STEM graduates of all

groups, although they are imprecisely estimated.

Combining our results, we perform a back-of-the-envelope calculation of these welfare

losses compared to the benefits shown in other studies (see Table B19). The key issue is that

the welfare losses we document in this study fall on a small group of workers. STEM graduates

comprise less than 10% of the entire workforce. For example, a wage gain of 1% that accrues to

90% of the workforce generates a total gain of 0.9%, while a wage loss of 1% accruing to 10% of

the workforce generates a total loss of 0.1%. Similarly, black male college graduates’ flight from

STEM may be a welfare loss, but this group is a small portion of the overall U.S. population.

Combining coefficient estimates, population weights, and 1990–2010 changes in foreign STEM

exposure, we estimate that the adverse effects we find equate to 1.2% of average wages across

native workers.14 We also use coefficient estimates in Peri, Shih, and Sparber (2015) along with

population weights and 1990–2010 changes in foreign STEM exposure to estimate the corresponding

net benefits implied by their study to equal 2.7% of average wages across native workers; this

is a net effect which already includes the negative effects for substitutable workers. The gross

13Winters (2014) combines domestic and foreign STEM graduates and estimates that a 1-percentage-point

increase in STEM graduates results in about 1%–2% higher wages for workers in the same metropolitan area. The

explanatory variable in Winters (2014) differs from Peri, Shih, and Sparber (2015) with the former examining effects

of STEM graduates and the latter examining effects of STEM occupation workers. Accounting for the different

scaling and dispersion across areas, the implied estimates from the two studies are more similar.
14See online Appendix Table B19 for further details. Numerous assumptions are required for these calculations.
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positive effect can be recovered by subtracting the negative effects from the net effect, i.e., the

gross effect is 3.9% of average wages. Thus, our back-of-the-envelope calculations suggest that

the negative effects we uncover account for roughly one-third of the gross benefits.

The net benefits are positive as indicated in Peri, Shih, and Sparber (2015), but the adverse

effects we find are still important. We also note that our derived estimates are based on wages,

whereas there are many other dimensions to welfare than just money. Immigration generates

winners and losers. Under the status quo, the winners do not compensate the losers. We thus

argue in favor of policies that return lost surplus to the affected groups. Such policies could include

income tax credits or student loan forgiveness for native STEM graduates impacted by increased

immigration. Policies to compensate black men who left STEM may be more difficult to implement.

If the cause of black men’s flight from STEM is reduced expectations as we speculate, then policy

responses may involve efforts to build self-efficacy via increased resources devoted to preparation,

mentorship, coaching, and networking in STEM education and careers for underrepresented

minorities. Further research is needed to better understand the appropriate policy responses.

5 Conclusion

Increasing the STEM workforce is vital for national economic performance and individual well-

being. Meeting the growing demand for STEM workers in the U.S. has been achieved in recent

decades largely by increased inflows of high-skilled foreign-born workers. Furthermore, many

businesses, researchers, and policymakers have called for further increases in the foreign STEM

workforce, e.g., by “stapling green cards to diplomas” for foreign-born STEM graduates educated

in the U.S. (Viser, 2012; Smith, 2015). High-skilled foreigners provide considerable benefits to
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receiving countries, but may also create unintended consequences by altering the human capital

investment and utilization of natives. Growing the foreign STEM workforce through immigration

may crowd natives out of STEM fields during college and out of STEM occupations later in their

careers. Adverse effects may also be disproportionately felt by women and minorities.

We examine effects of foreign STEM workers on native STEM education and employment

by utilizing the Immigration Act of 1990 as a natural experiment and exploiting both spatial and

temporal variation in foreign STEM exposure. We find that IA90 did not significantly reduce

STEM education among early cohorts for most groups of natives examined, which is good news.

The net effect of IA90 has been to substantially increase the STEM-educated workforce of the

U.S., fueling innovation and economic growth.

However, we do find that some natives with high exposure to foreign STEM workers were

adversely affected by IA90 in three different ways: (1) black male students shifted away from

STEM degrees; (2) white male STEM graduates shifted away from STEM occupations; and (3)

white female STEM graduates were less likely to participate in the workforce at all.

STEM majors are among the highest paying degree fields, so displacement of black men

out of STEM degrees is a troubling result. While increasing the foreign STEM workforce likely

benefits the U.S. overall, it imposes unique costs on black men, so that net gains/losses are not

equally distributed. Black men, who are already disadvantaged in the labor market in many dimensions,

bear a disproportionate burden.

We do not find shifts away from STEM degrees for other groups, but our focus is on early

post-IA90 cohorts and does not rule out the possibility that later cohorts of other groups would

alter their education decisions. For example, IA90 appears unlikely to have significantly altered

native higher education access to STEM degrees for early cohorts, but public institutions may
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adjust emphases over time to cater to foreign students who pay out-of-state tuition, which might

induce later cohort natives to leave STEM (Bound et al., 2016).

Our results also suggest likely welfare losses for white male STEM graduates, through

lower earnings in occupations less related to their college major. White female STEM graduates

may be especially burdened by permanently exiting the labor force. Black female STEM graduates

may also be adversely affected, but results for them are not precisely estimated.

Our findings highlight important considerations and implications for policy proposals to

further increase the foreign STEM workforce. While there may be broader national benefits of

increased STEM inflows, there are important costs as well that are disproportionately borne by

natives with high labor market exposure to foreign STEM graduates. Substantially increasing the

stock of foreign STEM workers, e.g., by “stapling green cards to diplomas” would likely have

unintended consequences that harm some natives. Our results may also justify additional policy

efforts to shield women and underrepresented minorities from being disproportionately burdened.
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Table 1: Weighted Summary Statistics of Outcome and Explanatory Variables

Panel A: Foreign STEM Exposure Summary Statistics for 1991–1994 Cohorts

Group Mean Std. Dev. Min Max

Black Men 0.121 0.057 0.018 0.216

Black Women 0.121 0.057 0.018 0.216

White Men 0.118 0.057 0.018 0.216

White Women 0.117 0.057 0.018 0.216

Panel B: Sample Means of Dependent Variables for 1986–1989 Cohorts

Black Black White White

Variable Men Women Men Women

Main Education Variables

STEM Degree Unconditional on Education Level 0.041 0.029 0.101 0.045

Bachelor’s Degree Completion in Any Field 0.164 0.241 0.348 0.391

STEM Degree Conditional on Bachelor’s Completion 0.249 0.119 0.291 0.116

Current STEM Employment

Conditional on Bachelor’s Completion 0.090 0.034 0.120 0.030

Conditional on Bachelor’s in STEM Field 0.260 0.159 0.292 0.131

Conditional on Bachelor’s in Non-STEM Field 0.033 0.017 0.050 0.016

Prior Year Employment

Conditional on Bachelor’s Completion 0.929 0.913 0.965 0.854

Conditional on Bachelor’s in STEM Field 0.927 0.922 0.968 0.863

Conditional on Bachelor’s in Non-STEM Field 0.930 0.912 0.963 0.852

Panel C: Sample Means of Dependent Variables for 1991–1994 Cohorts

Black Black White White

Variable Men Women Men Women

Main Education Variables

STEM Degree Unconditional on Education Level 0.041 0.034 0.107 0.057

Bachelor’s Degree Completion in Any Field 0.163 0.251 0.349 0.413

STEM Degree Conditional on Bachelor’s Completion 0.253 0.135 0.306 0.138

Current STEM Employment

Conditional on Bachelor’s Completion 0.090 0.036 0.127 0.032

Conditional on Bachelor’s in STEM Field 0.239 0.151 0.300 0.130

Conditional on Bachelor’s in Non-STEM Field 0.040 0.018 0.050 0.016

Prior Year Employment

Conditional on Bachelor’s Completion 0.934 0.925 0.971 0.859

Conditional on Bachelor’s in STEM Field 0.928 0.915 0.975 0.875

Conditional on Bachelor’s in Non-STEM Field 0.937 0.926 0.969 0.857

Notes: By definition, the foreign STEM exposure variables in panel A all equal zero for the 1986–1989 cohorts.

Means in panel B are useful for quantifying the relative magnitudes of the effects that we examine. A comparison

of panels B and C is useful for gauging overall time differences in outcomes during our analysis window.
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Table 2: Birth-State Foreign STEM Exposure and STEM Degree Completion

Black Black White White

Effect Men Women Men Women

Panel A: STEM graduation, unconditional of education level

Foreign STEM Exposure -0.017** 0.000 -0.001 0.004*

(0.008) (0.005) (0.005) (0.002)

Control mean [0.041] [0.029] [0.101] [0.045]

N 93,505 102,128 685,261 687,311

Panel B: BA graduation

Foreign STEM Exposure -0.003 -0.001 0.000 -0.005

(0.013) (0.014) (0.006) (0.006)

Control mean [0.164] [0.241] [0.348] [0.391]

N 93,505 102,128 685,261 687,311

Panel C: STEM graduation, conditional on BA graduation

Foreign STEM Exposure -0.085** -0.001 -0.007 0.008

(0.036) (0.022) (0.014) (0.006)

Control mean [0.249] [0.119] [0.291] [0.116]

N 14,354 26,274 241,807 283,569

Additional controls included in each regression:

Demographic characteristics Yes Yes Yes Yes

State characteristics Yes Yes Yes Yes

State-specific year age 18 trends Yes Yes Yes Yes

Notes: Dependent variable is an indicator for either (a) graduating in a STEM field,

unconditional on education level; (b) graduating with a bachelor’s degree in any field;

or (c) graduating with a bachelor’s degree in a STEM field. Foreign STEM Exposure

denotes the effect of a 10 percentage point increase in the share of foreign STEM workers

on the dependent variable. Each coefficient is estimated from a separate linear probability

model. The mean of the dependent variable for the control group is reported in brackets.

*Statistically significant at the .10 level; ** at the .05 level.
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Table 3: Foreign STEM Exposure and Non-STEM Degree Completion for Black Men

Liberal Social Other

Effect Business Education Health Arts Sciences Majors

Foreign STEM Exposure 0.018 0.000 0.009 0.025 0.023 0.009

(0.026) (0.028) (0.013) (0.033) (0.025) (0.015)

Control mean [0.258] [0.067] [0.023] [0.161] [0.211] [0.029]

N 14,354 14,354 14,354 14,354 14,354 14,354

Notes: Dependent variable is an indicator for graduating with a given non-STEM major, conditional on

college graduation. The mean of the dependent variable for the control group is reported in brackets. Note

that the bracketed control-group means sum to 100% across columns of Tables 3 and 4 combined. See notes in

Table 2 for further details.
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Table 4: Foreign STEM Exposure and STEM Degree Sub-fields for Black Men

Computer Biological Physical All Other

Effect Science Engineering Technology Sciences Sciences Mathematics STEM

Foreign STEM Exposure -0.019 -0.003 -0.010 -0.012 -0.013 -0.018*** -0.010

(0.020) (0.018) (0.008) (0.019) (0.013) (0.005) (0.017)

Control mean [0.063] [0.078] [0.015] [0.033] [0.025] [0.010] [0.027]

N 14,354 14,354 14,354 14,354 14,354 14,354 14,354

Notes: Dependent variable is an indicator for graduating with a given STEM major, conditional on college graduation. The sum of the

coefficients in this table equals the coefficient reported in the first column of Table 2 Panel C. See notes in Table 2 for further details.

***Statistically significant at the .01 level.
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Table 5: Birth-State Foreign STEM Exposure and Current Employment in a STEM Occupation

Black Black White White

Effect Men Women Men Women

Panel A: Conditional on college graduation in any field

Foreign STEM Exposure 0.008 0.001 -0.020*** -0.001

(0.029) (0.014) (0.005) (0.003)

Control mean [0.090] [0.034] [0.120] [0.030]

N 14,354 26,274 241,807 283,569

Panel B: Conditional on college graduation in a STEM field

Foreign STEM Exposure 0.063 -0.050 -0.058*** -0.036**

(0.079) (0.086) (0.014) (0.016)

Control mean [0.260] [0.159] [0.292] [0.131]

N 3,679 3,495 72,933 36,519

Panel C: Conditional on college graduation in a non-STEM field

Foreign STEM Exposure 0.007 0.006 -0.003 0.003

(0.018) (0.006) (0.004) (0.002)

Control mean [0.033] [0.017] [0.050] [0.016]

N 10,675 22,779 168,874 247,050

Notes: Dependent variable is an indicator for current employment in a STEM

occupation, conditional on various educational outcomes. See notes in Table 2 for

further details. **Statistically significant at the .05 level; *** at the .01 level.
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Table 6: Birth-State Foreign STEM Exposure and Prior Year Employment Probability

Black Black White White

Effect Men Women Men Women

Panel A: Conditional on college graduation in any field

Foreign STEM Exposure 0.028 0.015 0.009*** -0.008

(0.018) (0.017) (0.003) (0.006)

Control mean [0.929] [0.913] [0.965] [0.854]

N 14,354 26,274 241,807 283,569

Panel B: Conditional on college graduation in a STEM field

Foreign STEM Exposure 0.048 -0.022 -0.001 -0.037**

(0.053) (0.040) (0.005) (0.016)

Control mean [0.927] [0.922] [0.968] [0.863]

N 3,679 3,495 72,933 36,519

Panel C: Conditional on college graduation in a non-STEM field

Foreign STEM Exposure 0.020 0.022 0.014*** -0.004

(0.021) (0.019) (0.004) (0.006)

Control mean [0.930] [0.912] [0.963] [0.852]

N 10,675 22,779 168,874 247,050

Notes: Dependent variable is an indicator for being employed in the prior year,

conditional on various educational outcomes. See notes in Table 2 for further details.

**Statistically significant at the .05 level; *** at the .01 level.
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Table 7: Separate Cross-Section Regressions for Pre- and Post-1990 Cohorts

Black White White

Male Male Female

Effect STEM BA STEM Occ. Prior Yr Empl.

Panel A: 1986–1989 Cohorts

Foreign STEM Exposure -0.001 0.000 -0.007

(0.013) (0.010) (0.006)

Control mean [0.249] [0.292] [0.863]

N 7,694 38,791 17,856

Panel B: 1991–1994 Cohorts

Foreign STEM Exposure -0.032* -0.030*** 0.003

(0.017) (0.011) (0.009)

Control mean [0.253] [0.300] [0.875]

N 6,660 34,142 18,663

Notes: This table presents cross-sectional versions of our main estimates, separately

for pre- and post-1990 cohorts. To enable identification of the foreign exposure

measure for each group, we drop the state fixed effects and state time trends from

the model. Table B15 reports a broader set of results from this same specification.

*Statistically significant at the .10 level; *** at the .01 level.

Table 8: Instrumental Variable Estimates for Main Findings

Black White White

Male Male Female

Effect STEM BA STEM Occ. Prior Yr Empl.

Panel A: First-Stage Results

1980 Foreign STEM Exposure 0.489*** 0.502*** 0.493***

(0.071) (0.069) (0.069)

F-statistic 47.457 53.060 50.874

Stock-Yogo critical value for

10% maximal IV size 16.38 16.38 16.38

Panel B: Second-Stage Results

2000–1990 Change in Foreign STEM Exposure -0.174* -0.115*** -0.075**

(0.089) (0.025) (0.034)

Control mean [0.249] [0.292] [0.863]

N 14,354 72,933 36,519

Notes: The second-stage explanatory variable is the predicted 1990-2000 change in the foreign STEM share, and

the instrument is the 1980 foreign STEM share, both interacted with the post-1990 dummy. The unconditional

relationship for the first-stage is illustrated in Figure 1. The dependent variables and control variables are the

same as Table 2 Panel C for black men, Table 5 Panel B for white men, and Table 6 Panel B for white women.

*Statistically significant at the .10 level; ** at the .05 level; *** at the .01 level.
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Appendix A

Table A1: List of STEM Majors and ACS codes

ACS code Description ACS code Description

1103 Animal Sciences 2504 Mechanical Engineering Related Technologies

1104 Food Science 2599 Miscellaneous Engineering Technologies

1105 Plant Science and Agronomy 3600 Biology

1106 Soil Science 3601 Biochemical Sciences

1301 Environmental Science 3602 Botany

1302 Forestry 3603 Molecular Biology

2001 Communication Technologies 3604 Ecology

2100 Computer and Information Systems 3605 Genetics

2101 Computer Programming and Data Processing 3606 Microbiology

2102 Computer Science 3607 Pharmacology

2105 Information Sciences 3608 Physiology

2106 Computer Information Management & Security 3609 Zoology

2107 Computer Networking and Telecommunications 3611 Neuroscience

2400 General Engineering 3699 Miscellaneous Biology

2401 Aerospace Engineering 3700 Mathematics

2402 Biological Engineering 3701 Applied Mathematics

2403 Architectural Engineering 3702 Statistics and Decision Science

2404 Biomedical Engineering 3801 Military Technologies

2405 Chemical Engineering 4002 Nutrition Sciences

2406 Civil Engineering 4003 Neuroscience

2407 Computer Engineering 4005 Mathematics and Computer Science

2408 Electrical Engineering 4006 Cognitive Science and Biopsychology

2409 Engineering Mechanics, Physics, & Science 5000 Physical Sciences

2410 Environmental Engineering 5001 Astronomy and Astrophysics

2411 Geological and Geophysical Engineering 5002 Atmospheric Sciences and Meteorology

2412 Industrial and Manufacturing Engineering 5003 Chemistry

2413 Materials Engineering and Materials Science 5004 Geology and Earth Science

2414 Mechanical Engineering 5005 Geosciences

2415 Metallurgical Engineering 5006 Oceanography

2416 Mining and Mineral Engineering 5007 Physics

2417 Naval Architecture and Marine Engineering 5008 Materials Science

2418 Nuclear Engineering 5098 Multi-disciplinary or General Science

2419 Petroleum Engineering 5102 Nuclear, Industrial Radiology, & Biol. Tech.

2499 Miscellaneous Engineering 5901 Transportation Sciences and Technologies

2500 Engineering Technologies 6106 Health and Medical Preparatory Programs

2501 Engineering and Industrial Management 6108 Pharmacy, Pharmaceutical Sciences, & Admin.

2502 Electrical Engineering Technology 6202 Actuarial Science

2503 Industrial Production Technologies 6212 Management Information Systems and Statistics

50



Table A2: List of STEM occupations and ACS codes

Occ1990 code Description Main Definition Expanded Definition

44 Aerospace engineer Yes Yes

45 Metallurgical and materials engineers Yes Yes

47 Petroleum, mining, and geological engineers Yes Yes

48 Chemical engineers Yes Yes

53 Civil engineers Yes Yes

55 Electrical engineer Yes Yes

56 Industrial engineers Yes Yes

57 Mechanical engineers Yes Yes

59 Not-elsewhere-classified engineers Yes Yes

64 Computer systems analysts & computer scientists Yes Yes

66 Actuaries Yes Yes

67 Statisticians Yes Yes

68 Mathematicians and mathematical scientists Yes Yes

69 Physicists and astronomers Yes Yes

73 Chemists Yes Yes

74 Atmospheric and space scientists Yes Yes

75 Geologists Yes Yes

76 Physical scientists, n.e.c. Yes Yes

77 Agricultural and food scientists Yes Yes

78 Biological scientists Yes Yes

79 Foresters and conservation scientists Yes Yes

83 Medical scientists Yes Yes

229 Computer software developers Yes Yes

84 Physicians Yes

85 Dentists Yes

86 Veterinarians Yes

87 Optometrists Yes

88 Podiatrists Yes

89 Other health and therapy diagnosing occupations Yes

96 Pharmacists Yes

113 Earth, environmental, and marine science instructors Yes

114 Biological science instructors Yes

115 Chemistry instructors Yes

116 Physics instructors Yes

127 Engineering instructors Yes

128 Math instructors Yes
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Appendix B (for online publication)

Table B1: Remove time trends

Black White White

Male Male Female

Effect STEM BA STEM Occ. Prior Yr Empl.

Panel A: Baseline result

Foreign STEM Exposure -0.085** -0.058*** -0.037**

(0.036) (0.014) (0.016)

Control mean [0.249] [0.292] [0.863]

N 14,354 72,933 36,519

Panel B: No state trends

Foreign STEM Exposure -0.047*** -0.016* 0.005

(0.017) (0.009) (0.007)

Control mean [0.249] [0.292] [0.863]

N 14,354 72,933 36,519

Panel C: Model selection of linear & quadratic state trends

Foreign STEM Exposure -0.052*** -0.026* 0.005

(0.017) (0.013) (0.010)

Control mean [0.249] [0.292] [0.863]

N 14,354 72,933 36,519

Notes: Panel A reproduces the estimates from column 1 of Table 2 Panel C, the

column 3 of Table 5 Panel B, and the column 4 of Table 6 Panel B. Panel B presents

estimates without state trends. Panels C and D presents estimates using the model

selection method of Belloni, Chernozhukov, and Hansen (2014) and implementation

by Ahrens, Hansen, and Schaffer (2018), where the model selects among linear and

quadratic state trends. *Statistically significant at the .10 level; ** at the .05 level; ***

at the .01 level.
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Table B2: Robustness of length of time horizon

Black White White

Male Male Female

Effect STEM BA STEM Occ. Prior Yr Empl.

Panel A: Five years before and after

Foreign STEM Exposure -0.101*** -0.054*** -0.019

(0.032) (0.013) (0.013)

Control mean [0.252] [0.291] [0.864]

N 17,752 91,515 46,043

Panel B: Six years before and after

Foreign STEM Exposure -0.116*** -0.050*** -0.015

(0.022) (0.011) (0.012)

Control mean [0.257] [0.290] [0.863]

N 21,293 110,192 55,794

Panel C: Five years before (including 1990) and four years after

Foreign STEM Exposure -0.051** -0.034*** -0.039***

(0.025) (0.009) (0.011)

Control mean [0.247] [0.293] [0.864]

N 16,204 81,872 41,203

Notes: This table presents sensitivity of our results as we change the number of

birth cohorts in the sample. Panel A includes those turning 18 between 1985 and

1995 (excluding 1990). Panel B includes year age 18 cohorts between 1994 and

1996 (excluding 1990). Panel C includes those turning 18 between 1986 and 1994,

including 1990. *Statistically significant at the .10 level; ** at the .05 level; *** at the

.01 level.
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Table B3: Robustness of exclusion or inclusion of various states

Black White White

Male Male Female

Effect STEM BA STEM Occ. Prior Yr Empl.

Panel A: Excluding California

Foreign STEM Exposure -0.087** -0.041*** -0.043**

(0.042) (0.012) (0.018)

N 13,360 67,091 33,614

Panel B: Excluding Florida

Foreign STEM Exposure -0.081** -0.058*** -0.037**

(0.037) (0.014) (0.016)

N 13,632 71,027 35,590

Panel C: Excluding Illinois

Foreign STEM Exposure -0.079** -0.057*** -0.044***

(0.040) (0.016) (0.015)

N 13,310 68,529 34,453

Panel D: Excluding New York

Foreign STEM Exposure -0.058 -0.061*** -0.031*

(0.038) (0.016) (0.018)

N 12,701 66,228 33,033

Panel E: Excluding Texas

Foreign STEM Exposure -0.085** -0.058*** -0.038**

(0.035) (0.014) (0.016)

N 13,453 69,227 34,689

Panel F: Excluding Washington

Foreign STEM Exposure -0.085** -0.057*** -0.038**

(0.036) (0.014) (0.016)

N 14,269 71,651 35,876

Panel G: Including merit states

Foreign STEM Exposure -0.078** -0.053*** -0.036**

(0.035) (0.015) (0.015)

N 15,722 77,088 38,585

Panel H: Excluding 13 smallest states

Foreign STEM Exposure -0.087** -0.056*** -0.031*

(0.036) (0.015) (0.016)

N 13,687 69,293 34,586

Panel I: Exclude NY and state trends

Foreign STEM Exposure -0.048*** -0.015 0.010

(0.018) (0.011) (0.007)

N 12,701 66,228 33,033

Panel J: Exclude NY, lengthen policy window

Foreign STEM Exposure -0.097** -0.056*** -0.012

(0.038) (0.015) (0.014)

N 15,712 83,087 41,664

Notes: This table presents estimates of our three primary findings under various

sample selection alternatives. We sequentially exclude the most popular immigrant

destinations, as well as the 13 smallest states (each of which had population of less

than 1 million in 1980). We also include the merit states and present sensitivity

analyses for when New York is excluded. Due to space constraints, we exclude reports

of the control group’s average outcome. *Statistically significant at the .10 level; ** at

the .05 level; *** at the .01 level.
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Table B4: Robustness of specification of state controls

Black White White

Male Male Female

Effect STEM BA STEM Occ. Prior Yr Empl.

Panel A: Adding 1980 share BA working in STEM

Foreign STEM Exposure -0.081** -0.055*** -0.038***

(0.036) (0.014) (0.015)

Control mean [0.249] [0.292] [0.863]

N 14,354 72,933 36,519

Panel B: Adding 1990 share BA working in STEM

Foreign STEM Exposure -0.081** -0.058*** -0.037**

(0.037) (0.014) (0.016)

Control mean [0.249] [0.292] [0.863]

N 13,632 71,027 35,590

Panel C: Excluding state control variables

Foreign STEM Exposure -0.079** -0.057*** -0.044***

(0.040) (0.016) (0.015)

Control mean [0.249] [0.292] [0.863]

N 13,310 68,529 34,453

Notes: Panel A adds as an additional control the 1980 share of native college graduates

in the state employed in STEM occupations interacted with the post-IA90 dummy.

Panel B adds as an additional control the 1990 share of native college graduates in the

state employed in STEM occupations interacted with the post-IA90 dummy. Panel C

excludes all time-varying state control variables. *Statistically significant at the .10

level; ** at the .05 level; *** at the .01 level.
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Table B5: Alternative definitions for foreign STEM exposure

Black White White

Male Male Female

Effect STEM BA STEM Occ. Prior Yr Empl.

Panel A: Alternate definition of STEM occupations

Foreign STEM Exposure -0.087*** -0.042*** -0.033**

(0.028) (0.013) (0.014)

Control mean [0.249] [0.292] [0.863]

N 14,354 72,933 36,519

Panel B: 1980 share college of graduates instead of 1980 share of STEM workers

Foreign STEM Exposure -0.132*** -0.068*** -0.053***

(0.041) (0.022) (0.019)

Control mean [0.249] [0.292] [0.863]

N 14,354 72,933 36,519

Panel C: 1980 share of non-STEM workers instead of 1980 share of STEM workers

Foreign STEM Exposure -0.137*** -0.068*** -0.055***

(0.041) (0.023) (0.019)

N 14,354 72,933 36,519

Notes: This table presents estimates using alternative definitions of foreign STEM exposure. Panel A

considers a broader set of STEM occupations (see Table A2). Panel B considers using the 1980 share

of college graduates rather than the 1980 share of college graduates working in STEM occupations.

Panel C uses the 1980 share of college graduates working in non-STEM occupations. *Statistically

significant at the .10 level; ** at the .05 level; *** at the .01 level.
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Table B6: Additional analysis for STEM occupational outcomes using broader definition

Black Black White White

Effect Men Women Men Women

Panel A: Works in STEM occupation, conditional on BA graduation

Foreign STEM Exposure 0.001 -0.015 -0.022*** -0.000

(0.024) (0.014) (0.007) (0.003)

Control mean [0.133] [0.053] [0.150] [0.049]

N 14,354 26,274 241,807 283,569

Panel B: Works in STEM occupation, conditional on STEM BA graduation

Foreign STEM Exposure 0.048 -0.130* -0.063*** -0.027

(0.078) (0.078) (0.013) (0.019)

Control mean [0.347] [0.251] [0.368] [0.243]

N 3,679 3,495 72,933 36,519

Panel C: Works in STEM occupation, conditional on non-STEM BA graduation

Foreign STEM Exposure 0.004 0.001 -0.003 0.002

(0.020) (0.008) (0.005) (0.003)

Control mean [0.048] [0.024] [0.061] [0.024]

N 10,675 22,779 168,874 247,050

Notes: This table presents results similar to Table 5, but where current STEM occupation is more

broadly defined (see Table A2). *Statistically significant at the .10 level; ** at the .05 level; ***

at the .01 level.

Table B7: Discrete Treatment Based on Exposure State Groups

Black White White

Male Male Female

Effect STEM BA STEM Occ. Prior Yr Empl.

Medium Foreign STEM Exposure 0.049 -0.015 -0.045*

(0.044) (0.019) (0.025)

High Foreign STEM Exposure -0.105** -0.068*** -0.052*

(0.045) (0.023) (0.026)

Control mean [0.249] [0.292] [0.863]

N 14,354 72,933 36,519

Notes: This table estimates our main regression model using a discretized version of exposure.

States are classified as low-, medium-, or high-exposure based on terciles of the exposure

distribution. The coefficients reported represent the change in the outcome variable by moving

across exposure terciles (either from low to medium or from low to high). *Statistically

significant at the .10 level; ** at the .05 level; *** at the .01 level.
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Table B8: Detailed STEM occupation employment for STEM graduates

Engineering Computers Math & Science

Panel A: White Men

Foreign STEM Exposure -0.026** -0.037*** 0.002

(0.011) (0.012) (0.006)

Control mean [0.123] [0.137] [0.034]

N 72,933 72,933 72,933

Panel B: White Women

Foreign STEM Exposure -0.012 -0.014 -0.012

(0.011) (0.010) (0.013)

Control mean [0.036] [0.060] [0.038]

N 36,519 36,519 36,519

Notes: This table decomposes the effects reported in Panel B of Table 5 for white men

and women. Here, each dependent variable is a dummy for being employed in a specific

STEM occupation (rather than any STEM occupation as considered in Table 5). The sum

of the coefficients across columns equals the coefficient reported in Panel B of Table 5.

*Statistically significant at the .10 level; ** at the .05 level; *** at the .01 level.

Table B9: Employment outcomes, conditional on graduation in a STEM field

Black Black White White

Effect Men Women Men Women

Panel A: Unemployment, conditional on STEM BA graduation

Foreign STEM Exposure 0.002 -0.039 0.009 0.001

(0.036) (0.025) (0.006) (0.008)

Control mean [0.035] [0.042] [0.022] [0.024]

N 3,679 3,495 72,933 36,519

Panel B: Not in Labor Force, conditional on STEM BA graduation

Foreign STEM Exposure -0.065** 0.072 0.003 0.027*

(0.031) (0.069) (0.007) (0.016)

Control mean [0.049] [0.106] [0.030] [0.152]

N 3,679 3,495 72,933 36,519

Panel C: Worked at all in last five years, conditional on STEM BA

Foreign STEM Exposure 0.039 0.045 0.000 -0.041***

(0.028) (0.033) (0.005) (0.012)

Control mean [0.976] [0.937] [0.987] [0.911]

N 3,679 3,495 72,933 36,519

Notes: Dependent variable is an indicator for either (a) unemployment; (b) not

participating in labor force; or (c) working at all in the previous five years. All

samples are conditional on graduation in a STEM field. *Statistically significant at

the .10 level; ** at the .05 level; *** at the .01 level.
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Table B10: Placebo results

Black White White

Male Male Female

Effect STEM BA STEM Occ. Prior Yr Empl.

Foreign STEM Exposure 0.062 -0.005 0.010

(0.047) (0.011) (0.023)

Control mean [0.261] [0.284] [0.863]

N 15,393 83,917 38,585

Note: This table presents results from a placebo setting where we consider individuals

who turn 18 years old between 1981-1989, and where we consider 1985 as the year

the policy was instituted. Individuals turning 18 in 1986-1989 are considered to be

treated, while those turning 18 in 1981-1984 serve as controls. The reported estimates

should be compared with those reported in the first column of Table 2 Panel C, the

third column of Table 5 Panel B, and the last column of Table 6 Panel B.

Table B11: Treatment of pre-1990 cohorts

Black White White

Male Male Female

Effect STEM BA STEM Occ. Prior Yr Empl.

Foreign STEM Exposure, 86-89 cohorts 0.021 -0.009 -0.026**

(0.035) (0.010) (0.012)

Foreign STEM Exposure, 91-94 cohorts -0.023 -0.037* -0.053**

(0.060) (0.022) (0.022)

Control mean [0.268] [0.285] [0.861]

N 21,865 115,843 56,205

Note: This table presents results from a setting where we consider individuals who turn 18 years old

between 1982-1994, with 1990 as the year the policy was instituted. Individuals turning 18 in 1986-1989

are considered to be one treatment group, those turning 18 in 1991-1994 as a different treatment group,

and those turning 18 in 1982-1985 serve as controls. The reported estimates should be compared with

those reported in the first column of Table 2 Panel C, the third column of Table 5 Panel B, and the last

column of Table 6 Panel B.
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Table B12: Birth-State Foreign STEM Exposure and Recently Holding a STEM Occupation

Black Black White White

Effect Men Women Men Women

Panel A: Conditional on college graduation in any field

Foreign STEM Exposure -0.001 0.001 -0.021*** -0.001

(0.029) (0.016) (0.005) (0.003)

Control mean [0.096] [0.037] [0.124] [0.032]

N 14,354 26,274 241,807 283,569

Panel B: Conditional on college graduation in a STEM field

Foreign STEM Exposure 0.042 -0.064 -0.060*** -0.039***

(0.075) (0.087) (0.014) (0.015)

Control mean [0.274] [0.176] [0.301] [0.142]

N 3,679 3,495 72,933 36,519

Panel C: Conditional on college graduation in a non-STEM field

Foreign STEM Exposure 0.005 0.007 -0.004 0.003

(0.019) (0.006) (0.004) (0.002)

Control mean [0.037] [0.018] [0.052] [0.018]

N 10,675 22,779 168,874 247,050

Notes: Dependent variable is an indicator for recently holding a STEM occupation,

conditional on various educational outcomes. Compare with Table 5. **Statistically

significant at the .05 level; *** at the .01 level.
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Table B13: Birth-State Foreign STEM Exposure and Current Employment Probability

Black Black White White

Effect Men Women Men Women

Panel A: Conditional on college graduation in any field

Foreign STEM Exposure 0.008 0.000 0.002 -0.013

(0.023) (0.020) (0.003) (0.008)

Control mean [0.894] [0.873] [0.938] [0.808]

N 14,354 26,274 241,807 283,569

Panel B: Conditional on college graduation in a STEM field

Foreign STEM Exposure 0.063 -0.033 -0.012 -0.028

(0.055) (0.062) (0.008) (0.019)

Control mean [0.895] [0.878] [0.947] [0.824]

N 3,679 3,495 72,933 36,519

Panel C: Conditional on college graduation in a non-STEM field

Foreign STEM Exposure -0.014 0.006 0.009 -0.011

(0.025) (0.021) (0.005) (0.008)

Control mean [0.893] [0.873] [0.934] [0.806]

N 10,675 22,779 168,874 247,050

Notes: Dependent variable is an indicator for being currently employed,

conditional on various educational outcomes. Compare with Table 6.
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Table B14: Birth-State Foreign STEM Exposure and Log Earnings

Black Black White White

Effect Men Women Men Women

Panel A: Conditional on college graduation in any field

Foreign STEM Exposure -0.101 0.001 -0.016 0.013

(0.083) (0.050) (0.023) (0.022)

Control mean [10.923] [10.679] [11.272] [10.620]

N 13,278 24,096 234,168 242,328

Panel B: Conditional on college graduation in a STEM field

Foreign STEM Exposure -0.039 -0.057 -0.053 -0.030

(0.137) (0.118) (0.032) (0.063)

Control mean [11.096] [10.893] [11.406] [10.865]

N 3,407 3,218 70,972 31,794

Panel C: Conditional on college graduation in a non-STEM field

Foreign STEM Exposure -0.102 0.015 0.004 0.019

(0.094) (0.064) (0.023) (0.024)

Control mean [10.865] [10.650] [11.217] [10.588]

N 9,871 20,878 163,196 210,534

Notes: Dependent variable is the log of total earned income from the year prior to the

survey, conditional on various educational outcomes. See notes in Table 2 for further

details.
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Table B15: Separate Cross-Section Regressions for Pre- and Post-1990 Cohorts

Black Black White White

Effect Men Women Men Women

Panel A: STEM Major, 1986–1989 Cohorts

Foreign STEM Exposure -0.001 -0.006 -0.017*** -0.001

(0.013) (0.007) (0.006) (0.003)

Control mean [0.249] [0.119] [0.291] [0.116]

N 7,694 13,652 131,919 151,652

Panel B: STEM Major, 1991–1994 Cohorts

Foreign STEM Exposure -0.032* -0.003 -0.031** -0.005

(0.017) (0.008) (0.014) (0.005)

Control mean [0.253] [0.135] [0.306] [0.138]

N 6,660 12,622 109,888 131,917

Panel C: STEM Occupation given STEM BA, 1986–1989 Cohorts

Foreign STEM Exposure -0.013 -0.008 0.000 -0.002

(0.027) (0.026) (0.010) (0.008)

Control mean [0.260] [0.159] [0.292] [0.131]

N 1,938 1,693 38,791 17,856

Panel D: STEM Occupation given STEM BA, 1991–1994 Cohorts

Foreign STEM Exposure 0.016 -0.047* -0.030*** -0.026**

(0.031) (0.028) (0.011) (0.011)

Control mean [0.239] [0.151] [0.300] [0.130]

N 1,741 1,802 34,142 18,663

Panel E: Worked Last Year given STEM BA, 1986–1989 Cohorts

Foreign STEM Exposure 0.001 0.024 -0.007* -0.007

(0.013) (0.016) (0.004) (0.006)

Control mean [0.927] [0.922] [0.968] [0.863]

N 1,938 1,693 38,791 17,856

Panel F: Worked Last Year given STEM BA, 1991–1994 Cohorts

Foreign STEM Exposure -0.013 -0.051** -0.002 0.003

(0.018) (0.023) (0.004) (0.009)

Control mean [0.928] [0.915] [0.975] [0.875]

N 1,741 1,802 34,142 18,663

Notes: This table is a more detailed version of Table 7. See Table 7 for further details.

*Statistically significant at the .10 level; ** at the .05 level; *** at the .01 level.
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Table B16: Instrumental Variable Effects of Birth-State Foreign STEM Exposure on STEM

Degree Completion

Black Black White White

Effect Men Women Men Women

Panel A: STEM graduation, unconditional of education level

Foreign STEM Exposure -0.034* 0.000 -0.002 0.007

(0.018) (0.010) (0.010) (0.005)

Control mean [0.041] [0.029] [0.101] [0.045]

N 93,505 102,128 685,261 687,311

Panel B: BA graduation

Foreign STEM Exposure -0.007 -0.003 0.001 -0.009

(0.026) (0.028) (0.011) (0.011)

Control mean [0.164] [0.241] [0.348] [0.391]

N 93,505 102,128 685,261 687,311

Panel C: STEM graduation, conditional on BA graduation

Foreign STEM Exposure -0.174* -0.003 -0.014 0.016

(0.089) (0.046) (0.030) (0.012)

Control mean [0.249] [0.119] [0.291] [0.116]

N 14,354 26,273 241,807 283,569

Notes: Dependent variable is an indicator for either (a) graduating in a STEM field,

unconditional on education level; (b) graduating with a bachelor’s degree in any

field; or (c) graduating with a bachelor’s degree in a STEM field. Each coefficient

is estimated from a different linear probability model using two-stage least squares,

where 1990-2000 foreign STEM growth is instrumented by 1980 foreign STEM

exposure. *Statistically significant at the .10 level.
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Table B17: IV Effects of Birth-State Foreign STEM Exposure on Current Employment in a

STEM Occupation

Black Black White White

Effect Men Women Men Women

Panel A: Conditional on college graduation in any field

Foreign STEM Exposure 0.016 0.003 -0.041*** -0.001

(0.057) (0.030) (0.012) (0.005)

Control mean [0.090] [0.034] [0.120] [0.030]

N 14,354 26,273 241,807 283,569

Panel B: Conditional on college graduation in a STEM field

Foreign STEM Exposure 0.130 -0.103 -0.115*** -0.073*

(0.154) (0.170) (0.025) (0.040)

Control mean [0.260] [0.159] [0.292] [0.131]

N 3,676 3,492 72,933 36,519

Panel C: Conditional on college graduation in a non-STEM field

Foreign STEM Exposure 0.014 0.013 -0.007 0.007

(0.036) (0.012) (0.009) (0.005)

Control mean [0.033] [0.017] [0.050] [0.016]

N 10,673 22,778 168,874 247,050

Notes: Dependent variable is an indicator for current employment in a STEM

occupation, conditional on various educational outcomes. See notes in Tables 2 and

5 for further details. *Statistically significant at the .10 level; *** at the .01 level.
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Table B18: IV Effects of Birth-State Foreign STEM Exposure on Prior Year Employment

Probability

Black Black White White

Effect Men Women Men Women

Panel A: Conditional on college graduation in any field

Foreign STEM Exposure 0.058 0.032 0.019*** -0.016

(0.037) (0.037) (0.006) (0.011)

Control mean [0.929] [0.913] [0.965] [0.854]

N 14,354 26,273 241,807 283,569

Panel B: Conditional on college graduation in a STEM field

Foreign STEM Exposure 0.098 -0.045 -0.001 -0.075**

(0.109) (0.084) (0.009) (0.034)

Control mean [0.927] [0.922] [0.968] [0.863]

N 3,676 3,492 72,933 36,519

Panel C: Conditional on college graduation in a non-STEM field

Foreign STEM Exposure 0.040 0.046 0.029*** -0.009

(0.042) (0.044) (0.009) (0.012)

Control mean [0.930] [0.912] [0.963] [0.852]

N 10,673 22,778 168,874 247,050

Notes: Dependent variable is an indicator for being employed in the prior year,

conditional on various educational outcomes. See notes in Tables 2 and 6 for further

details. ** Statistically significant at the .05 level; *** at the .01 level.
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Table B19: Back-of-the-Envelope Calculations

1990–2010

Change in Weighted

Coefficient Treatment Group Population Average Wage

Estimate Variable Effect Weight Effect

Current Study’s Negative Effects

Wage of Black Male College Graduates -0.101 1.487 -0.150 0.015 -0.002

Wage Effect from Non-Employment of Female STEM Graduates -0.037 1.487 -0.055 0.050 -0.003

Wage of Other STEM Graduates -0.053 1.487 -0.079 0.092 -0.007

Subtotal -0.012

Peri, Shih, and Sparber (2015) Net Positive Effects

Wage of College Educated 0.080 0.530 0.043 0.3 0.013

Wage of Non-College 0.038 0.530 0.020 0.7 0.014

Subtotal 0.027

Gross Average Positive Effect 0.039

Notes: Population weights for negative effects are chosen somewhat as upper bounds since STEM education by women and minorities may be historically below

the steady-state that would occur in the absence of discrimination and other barriers.

Specifically, the population weights are computed from a number of simplifying assumptions as follows:

· Black male college graduates: 6% of population is black men; 25% of this group graduate from college. (.06 * .25 = .015)

· Female STEM graduates: 10% of population is STEM graduates; 50% of this group (should be) women. (.10 * .50 = .05)

· Other STEM graduates: 10% of the population is STEM graduates; don’t double count black men (6%) or women who left the labor force (3.7% of 50%).

([1-0.06-0.037*0.50]*0.10 = .092)

Coefficient estimates for the current study respectively come from the following sources:

· Table B14, Panel A

· Table 6, Panel B

· Table B14, Panel B

Coefficient estimates for Peri, Shih, and Sparber (2015) come from Table 5, Row 1 of that study.

Change in treatment variable for the current study is computed by the authors. Change in treatment variable for Peri, Shih, and Sparber (2015) is taken from

Tables 2 and 3 of that study.
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