The purpose of this in-class lab is to use R to import data. You don’t need to turn this in on Canvas, but I am hopeful that this will be a useful reference for you.

For starters

First, install the ipumsr package. This package is useful for understanding how to import data into R, and also how to use data products from the University of Minnesota Population Center (a.k.a. IPUMS).

Open up a new R script and add the usual “preamble” to the top:

# Add names of group members HERE
library(tidyverse)
library(magrittr)
library(modelsummary)
library(ipumsr)

Types of data

Data can come in a variety of forms. The most common are:

How to import these types of data

In RStudio, just click “Import Dataset” on the “Environment” pane (usually in the top right hand corner of RStudio). This will open a window where you can select the file location, how the dataset is delimited, etc. In the bottom-right of this new window, it will generate code for you that will reproduce this action. I strongly recommend you include that code in your R script moving forward.

Working directory

RStudio can be tricky if you don’t have your working directory appropriately set. You need to put your data in a place where RStudio can find it.

You can set your working directory by typing setwd("path/to/my/directory") or by clicking “Session” -> “Set Working Directory” and then following the prompt.

Importing data from a URL

You can also directly import data from a URL, if your data exists on the web somewhere. This can be convenient if you don’t want to store the raw data on your personal computer.

Example (from lab 9):
df.auto <- read_csv('https://tyleransom.github.io/teaching/MetricsLabs/auto.csv')

Using IPUMS data

To use data from any of the IPUMS sources (Current Population Survey, American Community Survey, etc.), you need the following four things:

The R command file is reproduced below:

# NOTE: To load data, you must download both the extract's data and the DDI
# and also set the working directory to the folder with these files (or change the path below).

if (!require("ipumsr")) stop("Reading IPUMS data into R requires the ipumsr package. It can be installed using the following command: install.packages('ipumsr')")

ddi <- read_ipums_ddi("cps_00010.xml") # filename may be different for you!
cps_data <- read_ipums_micro(ddi)

Need to work with value labels before you explore the data

cps_data %<>% mutate(educ = as_factor(lbl_clean(EDUC)))
cps_data %<>% mutate(sex  = as_factor(lbl_clean(SEX)))
cps_data %<>% mutate(age  = as.numeric(AGE))

Now Explore the Data (e.g. Lab 1, Lab 2)

cps_data %>% select(age,educ,sex) %>%
             datasummary_skim(histogram=F)
cps_data %>% select(age,educ,sex) %>%
             datasummary_skim(type="categorical",
                              histogram=F)

Using value labels

IPUMS data in the ipumsr package comes pre-labeled, which is a really nice feature. For example, we can do something like

ipums_val_labels(cps_data$SEX)

which tells us that 1 corresponds to “Male” and 2 to “Female” with 9 being “NIU” (or “Not In Universe,” another way of saying “NA”).

For more examples of what the ipumsr package can do, check out https://cloud.r-project.org/web/packages/ipumsr/vignettes/ipums.html.

Using a Codebook

When using survey data not from IPUMS, you will typically have to figure out the labels yourself:

Loading data from other packages

In Lab 10, I introduced you to the pdfetch package. I will now show you how to import stock price data and FRED data using this package. Note that there are other packages out there that will also do this, so feel free to look around.

library(pdfetch)
library(tsibble)
# get data on GDP and consumption expenditures from FRED
df <- pdfetch_FRED(c("GDPC1", "PCECC96")) # N.B. this is an object of type XTS, not tsibble

# get Apple & Amazon stock price data from Yahoo Finance
df <- pdfetch_YAHOO(c("aapl","amzn"), fields=c("adjclose","volume"))

Exporting summary stats and regression tables from modelsummary to Word

You can also use modelsummary() and datasummary_skim() to easily export directly to Microsoft Word.

Now Explore the Data (e.g. Lab 1, Lab 2)

cps_data %>% select(age,educ,sex) %>%
             datasummary_skim(type="categorical",
                              histogram=F,
                              output = "my_word_doc.docx")
cps_data %>% select(age,educ,sex) %>%
             datasummary_skim(histogram=F,
                              output = "my_2nd_word_doc.docx")