Tyler Ransom

Associate Professor of Economics
University of Oklahoma

Research Fellow
Institute for the Study of Labor (IZA)

Fellow
Global Labor Organization (GLO)

Home

Research

CV

Code

Teaching

Personal

Social

Contact:
Department of Economics
University of Oklahoma
322 CCD1, 308 Cate Center Drive
Norman, OK 73072

Hosted on GitHub Pages — Theme by orderedlist

Econometrics In-class Labs

tidyverse cheat sheet (PDF)

During most class periods, my introductory econometrics students work on labs in small groups (2-3 students). These are meant to introduce coding concepts and to gain hands-on experience with econometric estimators. Below is a complete list of labs, available in three different file formats. Labs are also available in a GitHub repository (see GitHub for license details).

  1. Intro to R, basic data cleaning steps
    HTML       PDF      R Markdown
  2. Basic hypothesis testing and simple linear regression
    HTML       PDF      R Markdown
  3. More practice with bivariate linear regression: nonlinear transformations, visualization, formulas
    HTML       PDF      R Markdown
  4. Multivariate linear regression
    HTML       PDF      R Markdown
  5. Omitted variable bias and multicollinearity
    HTML       PDF      R Markdown
  6. Dummy variables and Linear Probability Models
    HTML       PDF      R Markdown
  7. Single hypothesis testing of regression parameters
    HTML       PDF      R Markdown
  8. Joint hypothesis testing of regression parameters
    HTML       PDF      R Markdown
  9. Heteroskedasticity-robust inference
    HTML       PDF      R Markdown
  10. Intro to time series data and serial correlation
    HTML       PDF      R Markdown
  11. How to use data from IPUMS and other R packages
    HTML       PDF      R Markdown
  12. Instrumental variables estimation
    HTML       PDF      R Markdown
  13. 2SLS estimation
    HTML       PDF      R Markdown
  14. Time series forecasting
    HTML       PDF      R Markdown
  15. Pooled OLS, Random Effects, and Fixed Effects estimation
    HTML       PDF      R Markdown
  16. Difference in Differences estimation
    HTML       PDF      R Markdown